Picard Method for Existence, Uniqueness, and Gauss Hypergeomatric Stability of the Fractional-Order Differential Equations

نویسندگان

چکیده

In this paper, we consider a class of fractional-order differential equations and investigate two aspects these equations. First, the existence unique solution, then, using new control functions, Gauss hypergeometric stability. We use Chebyshev Bielecki norms in order to prove by Picard method. Finally, give some examples illustrate our results.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the existence and uniqueness of solution of initial value problem for fractional order differential equations on time scales

n this paper, at first the  concept of Caputo fractionalderivative is generalized on time scales. Then the fractional orderdifferential equations are introduced on time scales. Finally,sufficient and necessary conditions are presented for the existenceand uniqueness of solution of initial valueproblem including fractional order differential equations.

متن کامل

Existence and uniqueness results for a nonlinear differential equations of arbitrary order

This paper studies a fractional boundary value problem of nonlinear differential equations of arbitrary orders. New existence and uniqueness results are established using Banach contraction principle. Other existence results are obtained using Schaefer and Krasnoselskii fixed point theorems. In order to clarify our results, some illustrative examples are also presented.

متن کامل

Some New Existence, Uniqueness and Convergence Results for Fractional Volterra-Fredholm Integro-Differential Equations

This paper demonstrates a study on some significant latest innovations in the approximated techniques to find the approximate solutions of Caputo fractional Volterra-Fredholm integro-differential equations. To this aim, the study uses the modified Adomian decomposition method (MADM) and the modified variational iteration method (MVIM). A wider applicability of these techniques are based on thei...

متن کامل

On Existence and Uniqueness of Solution of Fuzzy Fractional Differential Equations

The purpose of this paper is to study the fuzzy fractional differentialequations. We prove that fuzzy fractional differential equation isequivalent to the fuzzy integral equation and then using this equivalenceexistence and uniqueness result is establish. Fuzzy derivative is considerin the Goetschel-Voxman sense and fractional derivative is consider in theRiemann Liouville sense. At the end, we...

متن کامل

Computational Method for Fractional-Order Stochastic Delay Differential Equations

Dynamic systems in many branches of science and industry are often perturbed by various types of environmental noise. Analysis of this class of models are very popular among researchers. In this paper, we present a method for approximating solution of fractional-order stochastic delay differential equations driven by Brownian motion. The fractional derivatives are considered in the Caputo sense...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematical Problems in Engineering

سال: 2021

ISSN: ['1026-7077', '1563-5147', '1024-123X']

DOI: https://doi.org/10.1155/2021/7074694